Mechanical fluidity of fully suspended biological cells

Biophys J. 2013 Oct 15;105(8):1767-77. doi: 10.1016/j.bpj.2013.08.040.

Abstract

Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adult
  • Animals
  • Cell Line, Tumor
  • Fibroblasts / physiology*
  • Humans
  • Mesenchymal Stem Cells / physiology*
  • Mice
  • NIH 3T3 Cells
  • Rheology*
  • Stress, Mechanical*
  • Suspensions
  • Temperature
  • Time Factors

Substances

  • Suspensions
  • Adenosine Triphosphate