Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor

Biosens Bioelectron. 2014 Mar 15:53:283-7. doi: 10.1016/j.bios.2013.09.058. Epub 2013 Oct 5.

Abstract

This paper reports the characterization of an electrochemical biosensor for the continuous monitoring of Naproxen based on cytochrome P450. The electrochemical biosensor is based on the drop-casting of multi-walled carbon-nanotubes (MWCNTs) and microsomal cytochrome P4501A2 (msCYP1A2) on a graphite screen-printed electrode (SPE). The proposed biosensor was employed to monitor Naproxen (NAP), a well-known anti-inflammatory compound, through cyclic voltammetry. The dynamic linear range for the amperometric detection of NAP had an upper limit of 300 µM with a corresponding limit of detection (LOD) of 16 ± 1 µM (S/N=3), which is included in NAP physiological range (9-300 µM). The MWCNT/msCYP1A2-SPE sensor was also calibrated for NAP detection in mouse serum that was previously extracted from mice, showing a slightly higher LOD (33 ± 18 µM). The stability of the msCYP1A2-based biosensor was assessed by longtime continuous cyclic voltammetric measurements. The ability of the sensor to monitor drug delivery was investigated by using a commercial micro-osmotic pump. Results show that the MWCNT/msCYP1A2-SPE sensor is capable of precisely monitoring the real-time delivery of NAP for 16 h. This work proves that the proposed electrochemical sensor might represent an innovative point-of-care solution for the personalization of drug therapies, as well as for pharmacokinetic studies in both animals and humans.

Keywords: Carbon nanotubes; Continuous drug monitoring; Cytochrome P450; Electrochemical biosensors; Personalized therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biosensing Techniques / methods*
  • Cytochrome P-450 Enzyme System / chemistry*
  • Electrodes
  • Humans
  • Limit of Detection
  • Mice
  • Nanotubes, Carbon / chemistry
  • Naproxen / blood
  • Naproxen / isolation & purification*
  • Oxidation-Reduction

Substances

  • Nanotubes, Carbon
  • Naproxen
  • Cytochrome P-450 Enzyme System