Harmonic active contours

IEEE Trans Image Process. 2014 Jan;23(1):69-82. doi: 10.1109/TIP.2013.2286326. Epub 2013 Oct 18.

Abstract

We propose a segmentation method based on the geometric representation of images as 2-D manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set function and the objective functional corresponds to the surface of the image manifold. In this geometric framework, both data-fidelity and regularity terms of the segmentation are represented by a single functional that intrinsically aligns the gradients of the level set function with the gradients of the image and results in a segmentation criterion that exploits the directional information of image gradients to overcome image inhomogeneities and fragmented contours. The proposed formulation combines this robust alignment of gradients with attractive properties of previous methods developed in the same geometric framework: 1) the natural coupling of image channels proposed for anisotropic diffusion and 2) the ability of subjective surfaces to detect weak edges and close fragmented boundaries. The potential of such a geometric approach lies in the general definition of Riemannian manifolds, which naturally generalizes existing segmentation methods (the geodesic active contours, the active contours without edges, and the robust edge integrator) to higher dimensional spaces, non-flat images, and feature spaces. Our experiments show that the proposed technique improves the segmentation of multi-channel images, images subject to inhomogeneities, and images characterized by geometric structures like ridges or valleys.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Information Storage and Retrieval / methods
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity