Background/objectives: Calcific aortic valvular disease (CAVD) is an actively regulated process characterized by the activation of specific osteogenic signaling pathways and apoptosis. We evaluated the involvement in CAVD of the TNF-related apoptosis-inducing ligand (TRAIL), an apoptotic molecule which induces apoptosis by interacting with the death receptor (DR)-4 and DR5, and whose activity is modulated by the decoy receptor (DcR)-1 and DcR2.
Methods: Sections of calcific and normal aortic valves, obtained at surgery time, were subjected to immunohistochemistry and confocal microscopy for TRAIL immunostaining. Valvular interstitial cells (VICs) isolated from calcific (C-VICs) and normal (N-VICs) aortic valves were investigated for the gene and protein expression of TRAIL receptors. Cell viability was assayed by MTT. Von Kossa staining was performed to verify C-VIC ability to produce mineralized nodules. TRAIL serum levels were detected by ELISA.
Results: Higher levels of TRAIL were detected in calcific aortic valves and in sera from the same patients respect to controls. C-VICs express significantly higher mRNA and protein levels of DR4, DR5, DcR1, DcR2 and Runx2 compared to N-VICs. C-VICs and N-VICs, cultured in osteogenic medium, express significantly higher mRNA levels of DR4, Runx2 and Osteocalcin compared to baseline. C-VICs and N-VICs were sensitive to TRAIL-apoptotic effect at baseline and after osteogenic differentiation, as demonstrated by MTT assay and caspase-3 activation. TRAIL enhanced mineralized matrix nodule synthesis by C-VICs cultured in osteogenic medium.
Conclusions: TRAIL is characteristically present within calcific aortic valves, and mediates the calcification of aortic valve interstitial cells in culture through mechanism involving apoptosis.
Keywords: Aortic calcification; Apoptosis; TRAIL.
© 2013.