Aroma in rice: genetic analysis of a quantitative trait

Theor Appl Genet. 1996 Nov;93(7):1145-51. doi: 10.1007/BF00230138.

Abstract

A new approach was developed which succeeded in tagging for the first time a major gene and two QTLs controlling grain aroma in rice. It involved a combination of two techniques, quantification of volatile compounds in the cooking water by gas chromatography, and molecular marker mapping. Four types of molecular marker were used (RFLPs, RAPDs, STSs, isozymes). Evaluation and mapping were performed on a doubled haploid line population which (1) conferred a precise character evaluation by enabling the analysis of large quantities of grains per genotype and (2) made possible the comparison of gas chromatography results and sensitive tests. The population size (135 lines) provided a good mapping precision. Several markers on chromosome 8 were found to be closely linked to a major gene controlling the presence of 2-acetyl-1-pyrroline (AcPy), the main compound of rice aroma. Moreover, our results showed that AcPy concentration in plants is regulated by at least two chromosomal regions. Estimations of recombination fractions on chromosome 8 were corrected for strong segregation distortion. This study confirms that AcPy is the major component of aroma. Use of the markers linked to AcPy major gene and QTLs for marker-assisted selection by successive backcrosses may be envisaged.