Transition metal-catalyzed asymmetric hydrogenation of heteroaromatic compounds is undoubtedly a straightforward and environmentally friendly method for the synthesis of a wide range of optically active heterocyclic compounds, which are widespread and ubiquitous in naturally occurring and artificial bioactive molecules. Over the past decade, a number of transition metal (Ir, Rh, Ru, and Pd) catalysts bearing chiral phosphorus ligands, amine-tosylamine ligands, and N-heterocyclic carbene ligands have been developed for such challenging transformation. This review will describe the significant contributions concerning the transition metal-catalyzed asymmetric hydrogenation of N-, O-, and S-containing heteroaromatic compounds, with emphasis on the evolution of different chiral ligands, related catalyst immobilization, and mechanism investigations.