Laboratory measurements of enhanced sound transmission from water to air at low frequencies are presented. The pressure at a monitoring hydrophone is found to decrease for shallow source depths in agreement with the classical theory of a monopole source in proximity to a pressure release interface. On the other hand, for source depths below 1/10 of an acoustic wavelength in water, the radiation pattern in the air measured by two microphones becomes progressively omnidirectional in contrast to the classical geometrical acoustics picture in which sound is contained within a cone of 13.4° half angle. The measured directivities agree with wavenumber integration results for a point source over a range of frequencies and source depths. The wider radiation pattern owes itself to the conversion of evanescent waves in the water into propagating waves in the air that fill the angular space outside the cone. A ratio of pressure measurements made using an on-axis microphone and a near-axis hydrophone are also reported and compared with theory. Collectively, these pressure measurements are consistent with the theory of anomalous transparency of the water-air interface in which a large fraction of acoustic power emitted by a shallow source is radiated into the air.