Mutagenesis and the subsequent selection of mesophyll diploid protoplasts ofNicotiana sylvestris on growth inhibitory concentrations of lysine plus threonine has led to the isolation of an LT-resistant mutant. Regeneration of this line (RLT 70) and analysis of its descendants demonstrated the dominant monogenic nuclear character of the resistance gene, further namedak-LT1. When the inhibition properties of aspartate kinase were examined in the homozygous mutant, lysine-sensitive activity could no longer be detected. In comparison, 70%-80% of the wild-type enzyme activity was usually inhibited by lysine, and the rest by threonine. Evidence for the existence of at least two AK isoenzymes was obtained by ion-exchange chromatography, where two peaks of activity could be detected: the first one to be eluted is lysine sensitive, and the second one threonine sensitive. One consequence of the altered regulation of AK in the mutant was the enhanced production of soluble threonine. Threonine accumulation was observed to occur throughout the life cycle of the mutant plant as well as in its different organs. In particular, leaves exhibited a 45-fold increment of soluble threonine, which corresponds to a 13-fold increase in total threonine: almost one-third of the total amino acids was free and proteinbound threonine. In RLT 70 seeds, 20% of the free amino acid pool was in the form of threonine (70-fold accumulation compared to the wild type), and total threonine content was increased five fold. As a general rule, the other amino acids were also more abundant in RLT 70 seeds, such that the total of amino acids present was between two to four times higher, but in contrast with the situation encountered in leaves, this was also due to a higher protein-bound amino acid content.