Cortical contusion injury disrupts olfactory bulb neurogenesis in adult mice

BMC Neurosci. 2013 Nov 13:14:142. doi: 10.1186/1471-2202-14-142.

Abstract

Background: Experimental brain trauma activates quiescent neural stem cells (NSCs) to increase neuronal progenitor cell proliferation in the adult rodent brain. Previous studies have shown focal brain contusion in the form of a unilateral controlled cortical impact (CCI) stimulates NSCs to bilaterally increase neurogenesis in the adult hippocampus.

Results: In this study we clarified the bi-lateral effects of a unilateral CCI on proliferation in the subventricular zone (SVZ) NSC niche and on neurogenesis in the olfactory bulb of adult mice. By varying the depth of impact from 1 mm to 2 mm depth, we show CCI to the left somatosensory cortex resulted in graded changes in mouse behavior and cellular pathology in the forebrain. As expected, contusion to the sensorimotor cortex resulted in motor coordination deficits in adult mice. During the first 3 days after injury, CCI increased proliferation in the impacted cortex, deeper striatum and SVZ of the forebrain ipsilateral to the CCI. In each of these regions proliferation was increased with increasing injury severity. At 30 days post-procedure, CCI resulted in a significant reduction in neurogenesis in the olfactory bulb ipsilateral to the CCI. Olfactory avoidance testing indicated disruptions in olfactory bulb neurogenesis were associated with impaired olfactory discrimination in mice post-injury.

Conclusion: The data demonstrate a focal cortical contusion injury to the left somatosensory cortex disrupts SVZ-olfactory bulb neurogenesis and impairs olfactory discrimination and motor coordination in adult mice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Injuries / pathology*
  • Brain Injuries / physiopathology
  • Cell Proliferation
  • Disease Models, Animal
  • Immunohistochemistry
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neural Stem Cells / pathology*
  • Neurogenesis / physiology*
  • Olfactory Bulb / pathology*