The addition of some surfactants to the fast-atom bombardment (FAB) matrix previously has been demonstrated to enhance analyte signals in fast-atom bombardment mass spectrometry. In particular, cationic surfactants appear to enhance the negative ion FAB detectability of analytes that exist as anionic species in the matrix solution. It has been proposed that the charged surfactant concentrates the oppositely charged analyte near the surface, which results in larger signals for the analyte. Cationic surfactants that contain a fixed positive charge and an additional basic site were prepared with different hydrophobic moieties and were evaluated for their effectiveness as FAB matrix additives. The compound N-octylnico-tinium bromide (ONBr) is shown to improve greatly the analyte-related signals in negative ion fast-atom bombardment mass spectrometry for a variety of polyanionic analytes, relative to other surfactants (e.g., cetylpyridinium salts). This surfactant not only enhances detectability, but also simplifies the pseudomolecular ion region of the resulting spectra by reducing or eliminating metal cation adduct peaks. The simple mechanism of enhancement via surface activity is evaluated, and alternative mechanisms are considered. It is clearly shown that ONBr, as a FAB matrix additive, will allow mass spectrometry to be used for the analysis of anionic compounds that normally exhibit very low responses.