Retinoids regulate not only various cell functions including proliferation and differentiation but also glucose and lipid metabolism. After we observed a marked up-regulation of cellular retinol-binding protein-I (CRBP-I) in the liver of hepatitis B virus x antigen (HBx)-transgenic (HBx Tg) mice which are prone to hepatocellular carcinoma (HCC) and fatty liver, we aimed to evaluate retinoid pathway, including genes for the retinoid physiology, CRBP-I protein expression, and retinoid levels, in the liver of HBx Tg mice. We also assessed the effect of chronic metformin treatment on HCC development in the mice. Many genes involved in hepatic retinoid physiology, including CRBP-I, were altered and the tissue levels of retinol and all-trans retinoic acid (ATRA) were elevated in the liver of HBx Tg mice compared to those of wild type (WT) control mice. CRBP-I protein expression in liver, but not in white adipose tissue, of HBx Tg mice was significantly elevated compared to WT control mice while CRBP-I protein expressions in the liver and WAT of high-fat fed obese and db/db mice were comparable to WT control mice. Chronic treatment of HBx Tg mice with metformin did not affect the incidence of HCC, but slightly increased hepatic CRBP-I level. In conclusion, hepatic CRBP-I level was markedly up-regulated in HCC-prone HBx Tg mice and neither hepatic CRBP-I nor the development of HCC was suppressed by metformin treatment.
Keywords: Cellular retinol-binding protein-I; HBx protein; Hepatocellular carcinoma; Metformin; Retinoids.