Adaptation to exercise training can affect bone marrow adiposity; muscle-fat distribution; and muscle volume, strength and architecture. The objective of this study was to identify exercise-load-associated differences in magnetic resonance image textures of thigh soft tissues between various athlete groups and non-athletes. Ninety female athletes representing five differently loading sport types (high impact, odd impact, high magnitude, repetitive low impact and repetitive non-impact), and 20 non-athletic clinically healthy female controls underwent magnetic resonance imaging. Five thigh muscles, subcutaneous fat and femoral bone marrow were analysed with co-occurrence matrix-based quantitative texture analysis at two anatomical levels of the dominant leg. Compared with the controls thigh muscle textures differed especially in high-impact and odd-impact exercise-loading groups. However, all sports appeared to modulate muscle textures to some extent. Fat tissue was found different among the low-impact group, and bone marrow was different in the high-impact group when compared to the controls. Exercise loading was associated with textural variation in magnetic resonance images of thigh soft tissues. Texture analysis proved a potential method for detecting apparent structural differences in the muscle, fat and bone marrow.
Keywords: bone marrow; fat; femoral; impact; muscle; quantitative analysis; sport.
© 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.