Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects

Proc Biol Sci. 2013 Nov 20;281(1774):20131835. doi: 10.1098/rspb.2013.1835. Print 2014 Jan 7.

Abstract

On coral reefs, herbivorous fishes consume benthic primary producers and regulate competition between fleshy algae and reef-building corals. Many of these species are also important fishery targets, yet little is known about their global status. Using a large-scale synthesis of peer-reviewed and unpublished data, we examine variability in abundance and biomass of herbivorous reef fishes and explore evidence for fishing impacts globally and within regions. We show that biomass is more than twice as high in locations not accessible to fisheries relative to fisheries-accessible locations. Although there are large biogeographic differences in total biomass, the effects of fishing are consistent in nearly all regions. We also show that exposure to fishing alters the structure of the herbivore community by disproportionately reducing biomass of large-bodied functional groups (scraper/excavators, browsers, grazer/detritivores), while increasing biomass and abundance of territorial algal-farming damselfishes (Pomacentridae). The browser functional group that consumes macroalgae and can help to prevent coral-macroalgal phase shifts appears to be most susceptible to fishing. This fishing down the herbivore guild probably alters the effectiveness of these fishes in regulating algal abundance on reefs. Finally, data from remote and unfished locations provide important baselines for setting management and conservation targets for this important group of fishes.

Keywords: fishing; herbivory; macroalgae and turf algae; phase shift; reef-fish; resilience.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biodiversity
  • Biomass
  • Conservation of Natural Resources
  • Coral Reefs*
  • Fisheries
  • Fishes / physiology*
  • Geography
  • Herbivory
  • Population Density
  • Population Dynamics