When choosing between immediate and temporally delayed goods, people sometimes decide disadvantageously. Here, we aim to provide process-level insight into differences between individually determined advantageous and disadvantageous choices. Participants played a computer game, deciding between two different rewards of varying size and distance by moving an agent towards the chosen reward. We calculated individual models of advantageous choices and characterized the decision process by analyzing mouse movements. The larger amount of participants' choices was classified as advantageous and the disadvantageous choices were biased towards choosing sooner/smaller rewards. The deflection of mouse movements indicated more conflict in disadvantageous choices compared with advantageous choices when the utilities of the options differed clearly. Further process oriented analysis revealed that disadvantageous choices were biased by a tendency for choice-repetition and an undervaluation of the value information in favour of the delay information, making rather simple choices harder than could be expected from the properties of the decision situation.