Extreme learning machine-based classification of ADHD using brain structural MRI data

PLoS One. 2013 Nov 19;8(11):e79476. doi: 10.1371/journal.pone.0079476. eCollection 2013.

Abstract

Background: Effective and accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) is currently of significant interest. ADHD has been associated with multiple cortical features from structural MRI data. However, most existing learning algorithms for ADHD identification contain obvious defects, such as time-consuming training, parameters selection, etc. The aims of this study were as follows: (1) Propose an ADHD classification model using the extreme learning machine (ELM) algorithm for automatic, efficient and objective clinical ADHD diagnosis. (2) Assess the computational efficiency and the effect of sample size on both ELM and support vector machine (SVM) methods and analyze which brain segments are involved in ADHD.

Methods: High-resolution three-dimensional MR images were acquired from 55 ADHD subjects and 55 healthy controls. Multiple brain measures (cortical thickness, etc.) were calculated using a fully automated procedure in the FreeSurfer software package. In total, 340 cortical features were automatically extracted from 68 brain segments with 5 basic cortical features. F-score and SFS methods were adopted to select the optimal features for ADHD classification. Both ELM and SVM were evaluated for classification accuracy using leave-one-out cross-validation.

Results: We achieved ADHD prediction accuracies of 90.18% for ELM using eleven combined features, 84.73% for SVM-Linear and 86.55% for SVM-RBF. Our results show that ELM has better computational efficiency and is more robust as sample size changes than is SVM for ADHD classification. The most pronounced differences between ADHD and healthy subjects were observed in the frontal lobe, temporal lobe, occipital lobe and insular.

Conclusion: Our ELM-based algorithm for ADHD diagnosis performs considerably better than the traditional SVM algorithm. This result suggests that ELM may be used for the clinical diagnosis of ADHD and the investigation of different brain diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Artificial Intelligence*
  • Attention Deficit Disorder with Hyperactivity / classification*
  • Attention Deficit Disorder with Hyperactivity / diagnosis*
  • Brain / anatomy & histology*
  • Brain / physiology
  • Child
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Software
  • Support Vector Machine

Grants and funding

This study was supported by the National Natural Science Foundation (number 81071150) (http://www.nsfc.gov.cn); Fundamental Research Funds for the Central Universities of China and by Doctoral Fund of Ministry of Education of China (20120201120071). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.