Biochemical and functional characterization of SpdA, a 2', 3'cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti

BMC Microbiol. 2013 Nov 26:13:268. doi: 10.1186/1471-2180-13-268.

Abstract

Background: 3', 5'cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3', 5'cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection.

Results: Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase.First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3', 5'cAMP for expression.Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3', 5'cAMP and, instead, high activity against the positional isomers 2', 3'cAMP and 2', 3'cGMP.Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2', 3'cAMP and 3', 5'cAMP in vitro at high concentration. We further showed that Clr is a 3', 5'cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2', 3'cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta.Fourth, we have shown a negative impact of exogenous 2', 3'cAMP on 3', 5'cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3', 5'cAMP signaling.

Conclusions: SpdA is a nodule-expressed 2', 3' specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3', 5'cAMP-based signaling from 2', 3' cyclic nucleotides of metabolic origin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2',3'-Cyclic-Nucleotide Phosphodiesterases / genetics
  • 2',3'-Cyclic-Nucleotide Phosphodiesterases / isolation & purification
  • 2',3'-Cyclic-Nucleotide Phosphodiesterases / metabolism*
  • Adenine Nucleotides / metabolism*
  • Gene Expression Profiling
  • Protein Binding
  • Sinorhizobium meliloti / enzymology*
  • Sinorhizobium meliloti / genetics

Substances

  • Adenine Nucleotides
  • 2',3'-cyclic AMP
  • 2',3'-Cyclic-Nucleotide Phosphodiesterases