In this study, a microfluidic platform was developed to generate single layer, linear array of microbeads for multiplexed high-throughput analysis of biomolecules. The microfluidic device is comprised of eight microbead-trapping units, where microbeads were immobilized in a linear array format by the exertion of a negative pressure in the control channel connected to each sieving microstructure. Multiplexed assays were achieved by using a mixture of different spectrally-encoded microbeads functionalized with specific probes, followed by on-chip reaction and detection. The microfluidic-based microbeads array platform was employed for multiplexed analysis of DNA and proteins, as demonstrated by the simultaneous discrimination of four HPV genotypes and the parallel detection of six different proteins. Compared with the off-chip protocols, the on-chip analysis exhibited better reaction efficiency, higher sensitivity and wider linear detection range. Visual inspection and identification of functionalized microbeads were facilitated by the single layer arrangement of microbeads so that accurate data acquisition can be performed during the detection process.
Keywords: Microbead array; Microfluidics; Multiplexed assay.
© 2013 Published by Elsevier B.V.