Generation of functional dendritic cells (DCs) with boosted immunity after the withdrawal of initial activation/maturation conditions remains a significant challenge. In this study, we investigated the impact of a newly developed maturation cocktail consisting of OK-432 and interferon-gamma (IFN-γ) on the function of human monocyte-derived DCs (MoDCs). We found that OK-432 plus IFN-γ stimulation could induce significantly stronger expression of surface molecules, production of cytokines, as well as migration of DCs compared with OK-432 stimulation alone. Most importantly, DCs matured with OK-432 plus IFN-γ-induced maintained secretion of interleukin-12 (IL-12)p70 in secondary culture after stimulus withdrawal. Functionally, OK-432 plus IFN-γ-conditioned DCs induce remarkable Th1 and Tc1 responses more effectively than OK-432 alone, even more than the use of α-type-1 cytokine cocktail. As a result, DCs matured with OK-432 plus IFN-γ can prime stronger cytotoxic lymphocyte (CTL) and natural killer (NK) cell response against tumor cells in vitro. Peripheral blood mononuclear cells activated by DCs matured with OK-432 plus IFN-γ also showed greater tumor growth inhibition in vivo in null mice. Molecular mechanistic analysis showed that DC maturation using IFN-γ in concert with OK-432 involves the activation of p38 and nuclear factor-kappa B (NF-κB) pathways. This study provided a novel strategy to generate more potent immune segments in DC vaccine.