To date, studies on the application of mesodermally derived mesenchymal-, hematopoietic- and vascular-lineage cells for cell therapy have provided either poor or insufficient data. The results are equivocal with regard to therapeutic efficiency and yield. Since the establishment of human embryonic stem cells (hESCs) in 1998, the capacity of hESCs to differentiate into various mesodermal lineages has sparked considerable interest in the regenerative medicine community, a group interested in generating specialized cells to treat patients suffering from degenerative diseases. Even though hESCs are sensitive, effective methods for guiding the differentiation of hESCs into specific mesodermal cell types are still being developed. In addition, to understand the functional properties of hESC derivatives, numerous animal model studies have been performed by many research groups over the last decade. In this review, we describe and summarize the protocols currently used for differentiation of hESCs into multiple mesodermal lineages and their therapeutic efficiency in different animal models. Furthermore, we discuss the technical hurdles associated with each protocol and the safety of hESC derivatives for therapeutic applications. Technical improvement of the methods used to produce hESC derivatives for therapeutic use in patients with degenerative diseases should remain an objective of future studies, as should the development of effective and stable induction systems.
Keywords: Differentiation; Endothelial cells; Hematopoietic cells; Human embryonic stem cells; Mesenchymal stem cells.