Effective pathogen detection is necessary for treatment of infectious diseases. Point of care (POC) devices have tremendously improved the global human heath. However, design criteria for sample processing POC devices for pathogen detection in limited infrastructure are challenging and can make a significant contribution to global health by providing rapid and sensitive detection of bacteria in food, water, and patient samples. In this paper, we demonstrate a novel portable POC diagnostic device that is simple to assemble for genetic detection of bacterial pathogens by isothermal DNA amplification. The device is fabricated with very low production cost, using simple methods and easy-to-access materials on a flexible ribbon polyethylene substrate. We showed that the device is capable of detection of 30 CFU mL(-1) of E. coli and 200 CFU mL(-1) of S. aureus in less than 1 hour. Through numerical simulations, we estimated that the device can be extended to high-throughput detection simultaneously performing a minimum of 36 analyses. This robust and sensitive detection device can be assembled and operated by non-specialist personnel, particularly for multiple bacterial pathogen detections in low-resource settings.