Herpes simplex virus entry is initiated by glycoprotein D (gD) binding to a cellular receptor, such as HVEM or nectin-1. gD is activated by receptor-induced displacement of the C-terminus from the core of the glycoprotein. Binding of HVEM requires the formation of an N-terminal hairpin loop of gD; once formed this loop masks the nectin-1 binding site on the core of gD. We found that HVEM and nectin-1 exhibit non-reciprocal competition for binding to gD. The N-terminus of gD does not spontaneously form a stable hairpin in the absence of receptor and HVEM does not appear to rely on a pre-existing hairpin for binding to gD(3C-38C) mutants. However, HVEM function is affected by mutations that impair optimal hairpin formation. Furthermore, nectin-1 induces a new conformation of the N-terminus of gD. We conclude that the conformation of the N-terminus of gD is actively modified by the direct action of both receptors.
Keywords: Glycoproteins; HVEM; Herpes simplex virus; Nectin; Receptors; Structure; Virus entry.
© 2013 Published by Elsevier Inc.