The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CL(pro). 3CL(pro) plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CL(pro) inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CL(pro). Structure-activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k₁ showed most potent inhibitory activity against 3CL(pro) (IC₅₀=1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.
Keywords: Docking studies; Inhibitor; Isatin; SARS.
Copyright © 2013 Elsevier Ltd. All rights reserved.