Vascular smooth muscle cells (SMC) maintain significant plasticity. Following environmental stimulation, SMC can alter their phenotype from one primarily concerned with contraction to a pro-inflammatory and matrix remodeling phenotype. This is a critical process behind peripheral vascular disease and atherosclerosis, a key element of cerebral aneurysm pathology. Evolving evidence demonstrates that SMCs and phenotypic modulation play a significant role in cerebral aneurysm formation and rupture. Pharmacological alteration of smooth muscle cell function and phenotypic modulation could provide a promising medical therapy to inhibit cerebral aneurysm progression. This study reviews vascular SMC function and its contribution to cerebral aneurysm pathophysiology.