TPS(PET)-A TPS-based approach for in vivo dose verification with PET in proton therapy

Phys Med Biol. 2014 Jan 6;59(1):1-21. doi: 10.1088/0031-9155/59/1/1. Epub 2013 Dec 10.

Abstract

Since the interest in ion-irradiation for tumour therapy has significantly increased over the last few decades, intensive investigations are performed to improve the accuracy of this form of patient treatment. One major goal is the development of methods for in vivo dose verification. In proton therapy, a PET (positron emission tomography)-based approach measuring the irradiation-induced tissue activation inside the patient has been already clinically implemented. The acquired PET images can be compared to an expectation, derived under the assumption of a correct treatment application, to validate the particle range and the lateral field position in vivo. In the context of this work, TPSPET is introduced as a new approach to predict proton-irradiation induced three-dimensional positron emitter distributions by means of the same algorithms of the clinical treatment planning system (TPS). In order to perform additional activity calculations, reaction-channel-dependent input positron emitter depth distributions are necessary, which are determined from the application of a modified filtering approach to the TPS reference depth dose profiles in water. This paper presents the implementation of TPSPET on the basis of the research treatment planning software treatment planning for particles. The results are validated in phantom and patient studies against Monte Carlo simulations, and compared to β(+)-emitter distributions obtained from a slightly modified version of the originally proposed one-dimensional filtering approach applied to three-dimensional dose distributions. In contrast to previously introduced methods, TPSPET provides a faster implementation, the results show no sensitivity to lateral field extension and the predicted β(+)-emitter densities are fully consistent to the planned treatment dose as they are calculated by the same pencil beam algorithms. These findings suggest a large potential of the application of TPSPET for in vivo dose verification in the daily clinical routine.

MeSH terms

  • Humans
  • Monte Carlo Method
  • Phantoms, Imaging
  • Positron-Emission Tomography*
  • Proton Therapy / methods*
  • Radiation Dosage*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Image-Guided / methods*