It has been shown previously that the retroviral envelope protein p15E suppresses certain monocyte and lymphocyte functions. In this paper, we describe the effects on natural killer (NK) activity of a synthetic peptide (CKS-17) with homology to a region of p15E conserved among numerous retroviruses. Enriched human NK cells were assayed against K562 tumor target cells in a 51Cr-release cytotoxicity assay. Pretreatment of NK cells with CKS-17 at concentrations as low as 1.5 microM, but not with equivalent concentrations of control materials, markedly and reproducibly suppressed NK lytic activity. Prior exposure of NK cells to interferon-alpha (IFN-alpha) at 1000 U/ml did not alter their sensitivity to CKS-17-induced inhibition. Pretreating NK cells with CKS-17 almost entirely diminished their responsiveness to IFN-alpha and IFN-gamma, but not to interleukin 2 (IL 2). Kinetics experiments demonstrated that CKS-17-mediated suppression of both endogenous and activated NK cells was reversible after 18 hr at 37 degrees C. Experiments designed to examine the CKS-17 mechanism of action revealed that the peptide bound to all Leu-11+ lymphocytes, as shown by two-color flow cytometry. CKS-17 did not, however, inhibit effector cell/target cell conjugate formation. These data suggest a new mechanism for immune suppression mediated by retroviruses; inhibition of NK function. They moreover imply that the CKS-17 peptide interferes with the lytic phase of NK cytolysis.