Increased mechanical property of extracellular matrix (ECM) around tumor tissue is highly correlated to the progression of cancer, and now its efficient regulation is still a challenge. Here, we report that Gd@C82(OH)22-collagen composites greatly suppress the malignant progression of cancer cells in vitro, and the metallofullerol can efficiently reduce the mechanical property of collagen matrix. Further study indicates that Gd@C82(OH)22 can firmly bind to tropocollagen, facilitate the nuclei and microfibril formation. The interference to interactions among tropocollagens leads to decreased amount and disturbed structure of collagen fibers. C60(OH)24, the fullerol counterpart of Gd@C82(OH)22, is studied in parallel and their impacts on collagen are strikingly modest. The comparison data reveals that the enhanced bioactivity of Gd@C82(OH)22 is highly related with its surface-structure. This study is the first attempt to apply nanomedicines to manipulate the biophysical property of collagen matrix, providing a new sight to target ECM in cancer therapy.
From the clinical editor: Increased presence of "harder" collagen in the extracellular matrix (ECM) around the tumor tissue highly correlates with cancer progression. In this paper, a metallofullerol-based approach is reported as an efficient nanotechnology approach in reducing the mechanical properties of the synthesized collagen, paving the way to the development of novel anti-cancer therapies.
Keywords: Collagen; Mechanical property; Metallofullerol; Structure-related bioactivity.
Copyright © 2014 Elsevier Inc. All rights reserved.