In the presence of time-varying confounders affected by prior treatment, standard statistical methods for failure time analysis may be biased. Methods that correctly adjust for this type of covariate include the parametric g-formula, inverse probability weighted estimation of marginal structural Cox proportional hazards models, and g-estimation of structural nested accelerated failure time models. In this article, we propose a novel method to estimate the causal effect of a time-dependent treatment on failure in the presence of informative right-censoring and time-dependent confounders that may be affected by past treatment: g-estimation of structural nested cumulative failure time models (SNCFTMs). An SNCFTM considers the conditional effect of a final treatment at time m on the outcome at each later time k by modeling the ratio of two counterfactual cumulative risks at time k under treatment regimes that differ only at time m. Inverse probability weights are used to adjust for informative censoring. We also present a procedure that, under certain "no-interaction" conditions, uses the g-estimates of the model parameters to calculate unconditional cumulative risks under nondynamic (static) treatment regimes. The procedure is illustrated with an example using data from a longitudinal cohort study, in which the "treatments" are healthy behaviors and the outcome is coronary heart disease.
Keywords: Causal inference; Coronary heart disease; Epidemiology; G-estimation; Inverse probability weighting.