Aim: To test the effects of a mineral trioxide aggregate-based sealer (MTA Fillapex(®)) and MTA (MTA-Ângelus(®)) on viability and on the production of cytokines, reactive oxygen species (ROS) and nitrogen species (NO) by M1 and M2 inflammatory macrophages.
Methodology: M1 (from C57BL/6 mice) and M2 (from BALB/c mice) peritoneal inflammatory macrophages were obtained and cultured in vitro in the presence of original and diluted extracts of MTA and MTA Fillapex (FLPX). The cell viability, ROS release and the release of tumour necrosis factor-a, interleukin (IL)-12, IL-10 and NO in response to stimulation with interferon-γ and Fusobacterium nucleatum or Peptostreptococcus anaerobius were evaluated. The data were analysed using the Mann-Whitney test and Student's t-test.
Results: Fillapex was cytotoxic at the highest concentrations (1:1;1:2) and decreased the viability (P < 0.05) of both macrophage types (<20%). MTA did not interfere with cellular viability. FLPX inhibited the release of ROS and decreased NO release in F. nucleatum and P. anaerobius -stimulated M1 and M2 macrophages (≤25 μ mol L(-1)). F. nucleatum-stimulated M2 macrophage cultures released lower levels of TNF-α when FLPX was added (≤1 ng mL(-1)). M2 macrophages released higher (>5 ng mL(-1)) levels of IL-10 than M1 macrophages. Only M1 macrophage cultures produced IL-12p70.
Conclusions: Fillapex impaired effector immune responses during inflammation (M1 macrophages), as well as during healing (M2 macrophages) responses.
Keywords: MTA and MTA Fillapex sealer; biocompatibility; cytokines; macrophages; nitrogen species; reactive oxygen species.
© 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.