LeuO is a quiescent LysR-type regulator belonging to the H-NS regulon. Activation of leuO transcription represses expression of pathogenicity island 1 (SPI-1) in Salmonella enterica serovar Typhimurium and inhibits invasion of epithelial cells. Loss of HilE suppresses LeuO-mediated downregulation of SPI-1. Activation of leuO transcription reduces the level of HilD protein, and loss of HilE restores the wild type HilD level. Hence, LeuO-mediated downregulation of SPI-1 may involve inhibition of HilD activity by HilE, a view consistent with the fact that HilE is a HilD inhibitor. In vivo analyses using β-galactosidase fusions indicate that LeuO activates hilE transcription. In vitro analyses by slot blotting, electrophoretic mobility shift analysis and DNase I footprinting show that LeuO binds the hilE promoter region. Although residual SPI-1 repression by LeuO is observed in the absence of HilE, the LeuO-HilE-HilD 'pathway' appears to be the major mechanism. Because both leuO and SPI-1 are repressed by H-NS, activation of leuO transcription may provide a backup mechanism for SPI-1 repression under conditions that impair H-NS-mediated silencing.
© 2013 John Wiley & Sons Ltd.