To combat the possibility of a zoonotic H5N1 pandemic in a timely fashion, it is necessary to develop a vaccine that would confer protection against homologous and heterologous human H5N1 influenza viruses. Using a replicating modified vaccinia virus Tian Tan strain (MVTT) as a vaccine vector, we constructed MVTTHA-QH and MVTTHA-AH, which expresses the H5 gene of a goose-derived Qinghai strain A/Bar-headed Goose/Qinghai/1/2005 or human-derived Anhui Strain A/Anhui/1/2005. The immunogenicity profiles of both vaccine candidates were evaluated. Vaccination with MVTTHA-QH induced a significant level of neutralizing antibodies (Nabs) against a homologous strain and a wide range of H5N1 pseudoviruses (clades 1, 2.1, 2.2, 2.3.2, and 2.3.4). Neutralization tests (NT) and Haemagglutination inhibition (HI) antibodies inhibit the live autologous virus as well as a homologous A/Xingjiang/1/2006 and a heterologous A/Vietnam/1194/2004, representing two human isolates from clade 2.2 and clade 1, respectively. Importantly, mice vaccinated with intranasal MVTTHA-QH were completely protected from challenge with lethal dosages of A/Bar-headed Goose/Qinghai/1/2005 and the A/Viet Nam/1194/2004, respectively, but not control mice that received a mock MVTTS vaccine. However, MVTTHA-AH induced much lower levels of NT against its autologous strain. Our results suggest that it is feasible to use the H5 gene from A/Bar-headed Goose/Qinghai/1/2005 to construct an effective vaccine, when using MVTT as a vector, to prevent infections against homologous and genetically divergent human H5N1 influenza viruses.