Fibronectin adsorption on biomaterial surfaces plays a key role in the biocompatibility of biomedical implants. In the current study, the adsorption behavior of the 7-10th type III modules of fibronectin (FN-III7-10) in the presence of hydroxyapatite (HAP) was systematically investigated by using molecular docking approach. It was revealed that the FN-III10 is the most important module among FN-III7-10 in promoting fibronectin binding to HAP by optimizing the interaction energy; the arginine residues were observed to directly interact with the hydroxyl group of HAP through electrostatic forces and hydrogen bonding. Moreover, it was found that the HAP-binding sites on FN-III10 are mainly located at the RGD loop region, which does not affect the interaction between the fibronectin protein and its cognate receptors on the cell surface.