Anti-cancer, pharmacokinetic and biodistribution studies of cremophor el free alternative paclitaxel formulation

Curr Drug Saf. 2014;9(2):145-55. doi: 10.2174/1574886308666131223123218.

Abstract

Purpose: The aim of the present investigation is to determine the in vivo potential of previously developed and optimized Cremophor EL free paclitaxel (CF-PTX) formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate. CF-PTX was found to have drug loading of 6 mg/ml similar to Cremophor EL based marketed paclitaxel formulation. In the present study, intracellular uptake, repeated dose 28 days sub-acute toxicity, anti-cancer activity, biodistribution and pharmacokinetic studies were conducted to determine in vivo performance of CF-PTX formulation in comparison to marketed paclitaxel formulation.

Methods: Intracellular uptake of CF-PTX was studied using A549 cells by fluorescence activated cell sorting assay (FACS) and fluorescence microscopy. In vivo anti-cancer activity of CF-PTX was evaluated using Ehrlich ascites carcinoma (EAC) model in mice followed by biodistribution and pharmacokinetic studies.

Results: FACS investigation showed that fluorescence marker acridine orange (AO) solution showed only 19.8±1.1% intracellular uptake where as significantly higher uptake was observed in the case of AO loaded CF-PTX formulation (85.4±2.3%). The percentage reduction in tumor volume for CF-PTX (72.5±2.3%) in EAC bearing mice was found to be significantly (p<0.05) higher than marketed formulation (58.6±2.8%) on 14th day of treatment. Pharmacokinetic and biodistribution studies showed sustained plasma concentration of paclitaxel depicted by higher mean residence time (MRT; 18.2±1.8 h) and elimination half life (12.8±0.6 h) with CF-PTX formulation as compared to marketed formulation which showed 4.4±0.2 h MRT and 3.6±0.4 h half life. The results of the present study demonstrated better in vivo performance of CF-PTX and this formulation appears to be a promising carrier for sustained and targeted delivery of paclitaxel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / administration & dosage*
  • Carcinoma, Ehrlich Tumor / drug therapy
  • Chemistry, Pharmaceutical
  • Female
  • Glycerol / administration & dosage
  • Glycerol / analogs & derivatives*
  • Male
  • Mice
  • Paclitaxel / administration & dosage*
  • Paclitaxel / adverse effects
  • Paclitaxel / pharmacokinetics
  • Paclitaxel / pharmacology
  • Tissue Distribution

Substances

  • Antineoplastic Agents, Phytogenic
  • cremophor EL
  • Paclitaxel
  • Glycerol