A mechanism for actin filament severing by malaria parasite actin depolymerizing factor 1 via a low affinity binding interface

J Biol Chem. 2014 Feb 14;289(7):4043-54. doi: 10.1074/jbc.M113.523365. Epub 2013 Dec 26.

Abstract

Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.

Keywords: Actin; Cofilin; Cytoskeleton; Electron Microscopy (EM); Malaria; Mass Spectrometry (MS); Plasmodium; Protein Cross-linking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / chemistry
  • Actin Cytoskeleton / genetics
  • Actin Cytoskeleton / metabolism
  • Actin Cytoskeleton / ultrastructure
  • Actins / chemistry
  • Actins / genetics
  • Actins / metabolism
  • Binding Sites
  • Cofilin 1 / chemistry
  • Cofilin 1 / genetics
  • Cofilin 1 / metabolism
  • Cytochalasin D / chemistry
  • Destrin / chemistry*
  • Destrin / genetics
  • Destrin / metabolism
  • Humans
  • Plasmodium falciparum / chemistry*
  • Plasmodium falciparum / genetics
  • Plasmodium falciparum / metabolism
  • Protozoan Proteins / chemistry*
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism

Substances

  • Actins
  • Cofilin 1
  • Destrin
  • Protozoan Proteins
  • Cytochalasin D