The adjuvants approved in human vaccine with recombinant/purified antigens induce weak cellular immune response and so the development of new adjuvant strategies is critical. CpG-ODN has successfully been used as an adjuvant (phase I-III clinical trials) but its bioavailability needs to be improved. We investigated the adjuvant ability of CpG-ODN formulated with a liquid crystal nanostructure of 6-O-ascorbyl palmitate (Coa-ASC16). Mice immunized with OVA/CpG-ODN/Coa-ASC16 elicited a potent specific IgG1, IgG2a, Th1 and Th17 cellular response without systemic adverse effects. These responses were superior to those induced by OVA/CpG-ODN (solution of OVA with CpG-ODN) and to those induced by the formulation OVA/CpG-ODN/Al(OH)3. Immunization with OVA/CpG-ODN/Coa-ASC16 resulted in a long-lasting cell-mediated immune response (at least 6.5 months). Furthermore, Coa-ASC16 alone allows a controlled release of CpG-ODN in vitro and induces local inflammatory response, independent of TLR4 signaling, characterized by an influx of neutrophils and Ly6C(high) monocytes and pro-inflammatory cytokines. Remarkably, the adjuvant capacity of CpG-ODN co-injected with Coa-ASC16 (OVA/CpG-ODN plus Coa-ASC16) was similar to the adjuvant activity of OVA/CpG-ODN, supporting the requirement for whole formulation to help CpG-ODN adjuvanticity. These results show the potential of this formulation, opening a new avenue for the development of better vaccines.
Keywords: Adjuvant; Ascorbyl palmitate; CpG-ODN; Liquid crystal; Vaccine.
Copyright © 2013 Elsevier Ltd. All rights reserved.