Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system

J Neurochem. 2014 May;129(3):473-83. doi: 10.1111/jnc.12650. Epub 2014 Jan 25.

Abstract

Our study was aimed at investigating whether complement, a complex of soluble and membrane-associated serum proteins, could, in addition to its well-documented post-synaptic activity, also pre-synaptically affect the release of classic neurotransmitters in central nervous system (CNS). Complement (dilution 1 : 10 to 1 : 10000) elicited the release of preloaded [(3) H]-d-aspartate ([(3) H]d-ASP) and endogenous glutamate from mouse cortical synaptosomes in a dilution-dependent manner. It also evoked [(3) H]d-ASP release from mouse hippocampal, cerebellar, and spinal cord synaptosomes, as well as from rat and human cortical nerve endings, but left unaltered the release of GABA, [(3) H]noradrenaline or [(3) H]acetylcholine. Lowering external Na(+) (from 140 to 40 mM) or Ca(2+) (from 1.2 to 0.1 mM) ions prevented the 1 : 300 complement-evoked [(3) H]d-ASP release from mouse cortical synaptosomes. Complement-induced releasing effect was unaltered in synaptosomes entrapped with the Ca(2+) ions chelator 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N', tetra-acetic acid or with pertussis toxin. Nifedipine,/ω-conotoxin GVIA/ω-conotoxin MVIIC mixture as well as the vesicular ATPase blocker bafilomycin A1 were also inefficacious. The excitatory amino acid transporter blocker DL-threo-ß-benzyloxyaspartic acid, on the contrary, reduced the complement-evoked releasing effect in a concentration-dependent manner. We concluded that complement-induced releasing activity is restricted to glutamatergic nerve endings, where it was accounted for by carrier-mediated release. Our observations afford new insights into the molecular events accounting for immune and CNS crosstalk. We investigated whether complement, a complex of soluble and membrane-associated serum proteins, could pre-synaptically affect the release of classic neurotransmitters in the central nervous system (CNS). Our data provide evidence that complement-induced releasing activity is restricted to glutamatergic nerve endings, where it was accounted for by carrier-mediated release. Our observations add new insights to the knowledge of the molecular events accounting for immune and CNS crosstalk. EAAT = excitatory amino acid transporter.

Keywords: carrier-mediated release; complement; glutamate; human cortex; mouse CNS; neurotransmitter release.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / metabolism*
  • Complement System Proteins / metabolism*
  • Complement System Proteins / pharmacology
  • Glutamic Acid / metabolism*
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Rats, Sprague-Dawley
  • Spinal Cord / metabolism*
  • Synaptosomes / drug effects
  • Synaptosomes / metabolism*

Substances

  • Glutamic Acid
  • Complement System Proteins