The exciton recombination processes in a series of elastically strained GaAsBi epilayers are investigated by means of time-integrated and time-resolved photoluminescence at T = 10 K. The bismuth content in the samples was adjusted from 1.16% to 3.83%, as confirmed by high-resolution X-ray diffraction (HR-XRD). The results are well interpreted by carrier trapping and recombination mechanisms involving the Bi-related localized levels. Clear distinction between the localized and delocalized regime was observed in the spectral and temporal photoluminescence emission.