Background: Hereditary head and neck paragangliomas (HNPGLs) account for at least 35% of all HNPGLs, most commonly due to germline mutations in SDHx susceptibility genes. Several studies about sympathetic paragangliomas have shown that (18)F-FDG PET/CT was not only able to detect and localize tumours, but also to characterize tumours ((18)F-FDG uptake being linked to SDHx mutations). However, the data concerning (18)F-FDG uptake specifically in HNPGLs have not been addressed. The aim of this study was to evaluate the relationship between (18)F-FDG uptake and the SDHx mutation status in HNPGL patients.
Methods: (18)F-FDG PET/CT from sixty HNPGL patients were evaluated. For all lesions, we measured the maximum standardized uptake values (SUVmax), and the uptake ratio defined as HNPGL-SUVmax over pulmonary artery trunk SUVmean (SUVratio). Tumour sizes were assessed on radiological studies.
Results: Sixty patients (53.3% with SDHx mutations) were evaluated for a total of 106 HNPGLs. HNPGLs-SUVmax and SUVratio were highly dispersed (1.2-30.5 and 1.0-17.0, respectively). The HNPGL (18)F-FDG uptake was significantly higher in SDHx versus sporadic tumours on both univariate and multivariate analysis (P = 0.002). We developed two models for calculating the probability of a germline SDHx mutation. The first one, based on a per-lesion analysis, had an accuracy of 75.5%. The second model, based on a per-patient analysis, had an accuracy of 80.0%.
Conclusions: (18)F-FDG uptake in HNPGL is strongly dependent on patient genotype. Thus, the degree of (18)F-FDG uptake in these tumours can be used clinically to help identify patients in whom SDHx mutations should be suspected.
Keywords: Fluorodeoxyglucose; PET-CT; genetics; head and neck paraganglioma; hereditary cancer; radiopharmaceuticals.
Published 2014. This article is a U.S. Government work and is in the public domain in the USA.