Type VII procollagen has been characterized as a product of epithelial cell lines. As secreted, it contains a large triple-helical domain terminated by a multi-globular-domained carboxyl terminus (NC-1), and a smaller amino-terminal globule (NC-2). The triple helix and the NC-1 domain have previously been identified in anchoring fibril-containing tissues by biochemical and immunochemical means, leading to the conclusion that type VII collagen is a major component of anchoring fibrils. In order to better characterize the tissue form of type VII collagen, we have produced a panel of monoclonal antibodies which recognize the NC-1 domain. Peptide mapping of these epitopes indicate that they are independent and span approximately 125,000 kDa of the total 150,000 kDa of each alpha chain contained in NC-1. All these antibodies elicit immunofluorescent staining of the basement membrane zone in tissues. Type VII collagen has been extracted from tissues. As previously reported, it is smaller than type VII procollagen, (Woodley, D. T., Burgeson, R. E., Lunstrum, G. P., Bruckner-Tuderman, L., and Briggaman, R. A., submitted for publication), and we now find that it predominantly occurs as a dimer. Following clostridial collagenase digestion, intact NC-1 has been recognized, indicating that the difference in apparent Mr between the tissue form of the molecule and type VII procollagen results from modification of the amino terminus. The size of the amino-terminal globule has been determined to be between approximately 96 and 102 kDa. Rotary shadowing analyses of extracted molecules indicate that dimeric molecules contain the NC-1 domain, but are missing intact NC-2. We propose that the tissue form monomer, Mr = 960,000, be referred to as "type VII collagen." These studies strongly suggest that anchoring fibrils contain dimeric molecules with intact NC-1 domains. The data also support the previous suggestion that the NC-2 domain is involved in the formation of disulfide bond-stabilized type VII collagen dimers, and is subsequently removed by physiological proteolytic processing.