Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation

Mol Pharmacol. 2014 Apr;85(4):586-97. doi: 10.1124/mol.113.088443. Epub 2014 Jan 16.

Abstract

The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / cytology
  • GTP-Binding Protein alpha Subunits, G12-G13 / genetics
  • GTP-Binding Protein alpha Subunits, G12-G13 / metabolism*
  • HEK293 Cells
  • HSP90 Heat-Shock Proteins / metabolism*
  • Humans
  • Mutation
  • Phylogeny
  • Protein Binding
  • Serum Response Element*
  • Signal Transduction
  • Transcriptional Activation
  • rho GTP-Binding Proteins / metabolism

Substances

  • Drosophila Proteins
  • HSP90 Heat-Shock Proteins
  • GTP-Binding Protein alpha Subunits, G12-G13
  • cta protein, Drosophila
  • rho GTP-Binding Proteins