RNA interference (RNAi) is an RNA-dependent gene silencing approach controlled by an RNA-induced silencing complex (RISC). Herein, we present a synthetic RISC-mimic nanocomplex, which can actively cleave its target RNA in a sequence-specific manner. With high enzymatic stability and efficient self-delivery to target cells, the designed nanocomplex can selectively and potently induce gene silencing without cytokine activation. These nanocomplexes, which target multidrug resistance, are not only able to bypass the P-glycoprotein (Pgp) transporter, due to their nano-size effect, but also effectively suppress Pgp expression, thus resulting in successful restoration of drug sensitivity of OVCAR8/ADR cells to Pgp-transportable cytotoxic agents. This nanocomplex approach has the potential for both functional genomics and cancer therapy.
Keywords: biomimetics; drug design; gene regulation; gold; nanoparticles.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.