Miniature Cheddar-type cheeses were produced using microbial rennet from Bacillus amyloliquefaciens (milk-clotting enzyme [MCE]) or calf rennet (CAR). With the exception of pH, there were no significant differences in gross composition between MCE-cheese (MCE-C) and CAR-cheese (CAR-C). The pH value of CAR-C was significantly higher than that of MCE-C at 40 and 60 d of ripening. The total nitrogen content of the pH 4.6-soluble fraction obtained from MCE-C was higher than that obtained from CAR-C. However, nitrogen content of the 12% TCA-soluble fraction was similar between CAR-C and MCE-C. The extent of α(s1)-casein and β-casein hydrolysis, measured by urea-PAGE, was similar in both cheese samples. The hydrolysis of β-casein was lower than that of α(s1)-casein. Different reverse phase-high-performance liquid chromatography peptide profiles of ethanol-soluble and ethanol-insoluble fractions were obtained from CAR-C and MCE-C. The peptide content in the 2 cheese samples increased throughout ripening; the ratio of hydrophobic to hydrophilic peptides was lower in MCE-C than in CAR-C. Compared with CAR-C, MCE-C was softer as a result of higher protein hydrolysis. Microbial rennet from B. amyloliquefaciens contributed to higher proteolytic rates, which reduced ripening time.
Keywords: Bacillus amyloliquefaciens; Cheddar cheese; proteolysis; rennet; texture.
© 2014 Institute of Food Technologists®