The ability of human γδ T cells from healthy donors to kill pancreatic ductal adenocarcinoma (PDAC) in vitro and in vivo in immunocompromised mice requires the addition of γδ T-cell-stimulating antigens. In this study, we demonstrate that γδ T cells isolated from patients with PDAC tumor infiltrates lyse pancreatic tumor cells after selective stimulation with phosphorylated antigens. We determined the absolute numbers of γδ T-cell subsets in patient whole blood and applied a real-time cell analyzer to measure their cytotoxic effector function over prolonged time periods. Because phosphorylated antigens did not optimally enhance γδ T-cell cytotoxicity, we designed bispecific antibodies that bind CD3 or Vγ9 on γδ T cells and Her2/neu (ERBB2) expressed by pancreatic tumor cells. Both antibodies enhanced γδ T-cell cytotoxicity with the Her2/Vγ9 antibody also selectively enhancing release of granzyme B and perforin. Supporting these observations, adoptive transfer of γδ T cells with the Her2/Vγ9 antibody reduced growth of pancreatic tumors grafted into SCID-Beige immunocompromised mice. Taken together, our results show how bispecific antibodies that selectively recruit γδ T cells to tumor antigens expressed by cancer cells illustrate the tractable use of endogenous γδ T cells for immunotherapy.
©2014 AACR