Background and aims: Normoglucosetolerants (NGT) are considered at low risk, even if a 1-h post-load glucose (PLG) value ≥ 155 mg dl(-1) identifies NGTs at high risk of type-2 diabetes (T2D) and sub-clinical organ damage. Specific dietary factors may affect insulin sensitivity and the risk of T2D. However, it is unknown whether dietary components affect 1-h PLG in hypertensive NGT. Therefore, we investigate the effect of dietary patterns on 1-h PLG.
Methods and results: We selected 188 subjects (94 NGTs < 155 mg dl(-1) and 94 NGTs ≥ 155 mg dl(-1) PLG), well matched for age, gender and body mass index (BMI). Insulin sensitivity was evaluated using the Matsuda index. Dietary intake was quantified by a semiquantitative food frequency questionnaire (FEQ) validated in the European Investigation into Cancer and Nutrition (EPIC) study. The NGT ≥ 155 group had significantly reduced insulin sensitivity (40.3 ± 19.8 vs. 73.3 ± 28.8; P < 0.0001). With the exclusion of total calories, lipids, alcohol and fiber consumption we observed a significant difference, between groups, in starch (214.1 ± 52.4 vs. 268.8 ± 71.8 g; P < 0.0001), saturated (27.4 ± 8.7 vs. 24.1 ± 8.5 g; P = 0.009), monounsaturated (45.5 ± 8.9 vs. 48.8 ± 10.7 g; P = 0.023) and polyunsaturated fatty acids (FAs) (14.5 ± 4.0 vs. 16.8 ± 4.7 g; P < 0.0001), fructose (14.5 ± 5.3 vs. 11.2 ± 4.8 g; P < 0.0001), and oligosaccharides (103.2 ± 26.6 vs. 89.9 ± 29.2 g; P = 0.001) consumption. In the whole population, starch was the major predictor of 1-h PLG, explaining 23.2% of variation (P < 0.0001). In the NGT < 155 group, fructose was the strongest predictor, accounting for 15.4% of the variation; BMI, gender and polyunsaturated FAs added another 6.6%, 3.6% and 3.2%, respectively. In the NGT ≥ 155 group, saturated and polyunsaturated FAs were retained as the major predictors of 1-h PLG, explaining 18.2% and 11.4% of the variation.
Conclusions: The present data demonstrate that dietary patterns affect 1-h PLG, remarking the importance of both quantitative and qualitative composition of a diet.
Keywords: Dietary pattern; Essential hypertension; Post-load glucose.
Copyright © 2013 Elsevier B.V. All rights reserved.