Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs

Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2379-84. doi: 10.1073/pnas.1317360111. Epub 2014 Jan 24.

Abstract

Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.

Keywords: CYP450; QTL; plant hormone.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosomes, Plant
  • Gene Deletion*
  • Genes, Plant
  • Genetic Variation*
  • Lactones / metabolism*
  • Molecular Sequence Data
  • Oryza / genetics
  • Oryza / metabolism*
  • Plant Proteins / genetics*
  • Quantitative Trait Loci

Substances

  • Lactones
  • Plant Proteins

Associated data

  • GENBANK/JX235696
  • GENBANK/JX235697
  • SRA/SRA050654