Highly elongated BiFeO3 is epitaxially grown on hexagonal sapphire(0001) substrate within a rather narrow synthesis window. Both X-ray reciprocal space maps and Raman characterizations reveal that it is of true tetragonal symmetry but not the commonly observed MC type monoclinic structure. The tetragonal BiFeO3 film exhibits an island growth mode, with the island edges oriented parallel to the ⟨10-10⟩ and ⟨12-30⟩ directions of the sapphire substrate. With increasing deposition time, a transition from square island to elongated island and then to a continuous film is observed. The metastable tetragonal phase can remain on the substrate without relaxation to the thermally stable rhombohedral phase up to a critical thickness of 450 nm, providing an exciting opportunity for practicable lead-free ferroelectrics. These results facilitate a better understanding of the phase stability of BiFeO3 polymorphs and enrich the knowledge about the heteroepitaxial growth mechanism of functional oxides on symmetry-mismatched substrates.