Purpose: This study was undertaken to establish a rabbit esophageal tumor model for mimicking human esophageal squamous carcinoma (ESC) by endoscopic and surgical implantation of VX2 tumors.
Methods: Fragments of a VX2 tumour were endoscopically implanted in the submucosal layer of the thoracic esophagus of 32 New Zealand white rabbits, while 34 animals received surgical implantation into the muscular layer. Then, the animals were studied endoscopically and pathologically. The safety and efficiency of the two methods and the pathological features of the animal models were analyzed.
Results: Both the endoscopic and the surgical method had a relatively high success rate of tumor implantation [93.7% (30/32) vs. 97.1% (33/34)] and tumor growth [86.7% (26/30) vs. 81.8% (27/33)], and the variation in the results was not statistically significant (P>0.05). Compared with those produced by the surgical method, the models produced by the endoscopic method had a higher rate of severe esophageal stricture [61.5% (16/26) vs. 29.6% (8/27)] and of intra-luminal tumor growth [73.1% (19/26) vs. 37.0% (10/27)], and had a lower rate of tumor invasion of adjacent organs [53.8% (14/26) vs. 81.5% (22/27)]; all of these results were statistically significant (P<0.05). However, the difference in the survival time and the rates of tumor regional/distant metastasis [38.5% (10/26) vs. 51.8% (14/27)] between the two methods were not statistically significant (P>0.05).
Conclusion: The endoscopic and surgical methods are both safe and effective for establishment of VX2 tumors in the rabbit esophagus. The models produced by the two methods have different pathologic features mimicking that of human ESC. We recommend the models for studies on surgical procedures and minimally invasive treatments.