Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae

PLoS One. 2014 Jan 31;9(1):e86648. doi: 10.1371/journal.pone.0086648. eCollection 2014.

Abstract

Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Binding Sites / genetics
  • Brassica napus / genetics*
  • Brassica napus / parasitology
  • Cluster Analysis
  • Gene Expression Profiling*
  • Host-Parasite Interactions
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Oligonucleotide Array Sequence Analysis
  • Plant Diseases / genetics
  • Plant Diseases / parasitology
  • Plant Proteins / genetics
  • Plant Roots / genetics*
  • Plant Roots / parasitology
  • Plasmodiophorida / growth & development*
  • Plasmodiophorida / physiology
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Plant / genetics*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transcription Factors / genetics

Substances

  • MicroRNAs
  • Plant Proteins
  • RNA, Messenger
  • RNA, Plant
  • Transcription Factors

Associated data

  • GEO/GSE51590

Grants and funding

Funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Agriculture Funding Consortium, Alberta Canola Producers Commission, and Alberta Crop Industry Development Fund is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.