Wireless magnetic-based closed-loop control of self-propelled microjets

PLoS One. 2014 Feb 5;9(2):e83053. doi: 10.1371/journal.pone.0083053. eCollection 2014.

Abstract

In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10⁻¹⁰ A.m² at magnetic field and linear velocity of 2 mT and 100 µm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 µm/s, and within an average region-of-convergence of 365 µm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Magnetic Fields*
  • Models, Theoretical*
  • Nanotechnology*