Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus

PLoS One. 2014 Feb 5;9(2):e88223. doi: 10.1371/journal.pone.0088223. eCollection 2014.

Abstract

Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid / methods
  • Drugs, Chinese Herbal / metabolism
  • Drugs, Chinese Herbal / therapeutic use*
  • Female
  • Lupus Erythematosus, Systemic / blood
  • Lupus Erythematosus, Systemic / drug therapy*
  • Lupus Erythematosus, Systemic / metabolism*
  • Mass Spectrometry / methods
  • Metabolomics / methods*
  • Mice
  • Mice, Inbred C57BL
  • Prednisone / therapeutic use

Substances

  • Drugs, Chinese Herbal
  • Prednisone

Grants and funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81001515), the Research Fund for the Doctoral Program of Higher Education of China (No. 20093322120001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.