The need to assess the risk from food allergens derives directly from the need to manage effectively this food safety hazard. Work spanning the last two decades dispelled the initial thinking that food allergens were so unique that the risk they posed was not amenable to established risk assessment approaches and methodologies. Food allergens possess some unique characteristics, which make a simple safety assessment approach based on the establishment of absolute population thresholds inadequate. Dose distribution modelling of MEDs permitted the quantification of the risk of reaction at the population level and has been readily integrated with consumption and contamination data through probabilistic risk assessment approaches to generate quantitative risk predictions. This paper discusses the strengths and limitations of this approach and identifies important data gaps, which affect the outcomes of these predictions. These include consumption patterns among allergic individuals, analytical techniques and their application, severity-dose relationships, and the impact of extraneous factors which alter an individual's physiology, such as infection or exercise. Nevertheless, application of these models has provided valuable insights, leading to further refinements and generating testable hypotheses. Their application to estimate the risk posed by the concurrent consumption of two potentially contaminated foods illustrates their power.
Keywords: Food allergy; Probabilistic modelling; Public health; Reference dose; Risk assessment; Thresholds.
Copyright © 2014 ILSI Europe. Published by Elsevier Ltd.. All rights reserved.